COP 26 and Climate Change Action

Will COP 26 be an echo chamber of plausible responses to the climate crisis or a forum that drives change? Will COP 26 be the moment that stops the increase in global temperature, or will it be drowned in politics?

Methane at COP 26

Since 1950 atmospheric methane (CH4) has grown from 1220 ppb to 1870 ppb. On its own, it has increased temperature during that period by 0.13C. Breaking up this increase by its components reveals the following:

  • 57% from fugitive emissions from natural gas.
  • 25% from ruminant animals (both farmed and wild).
  • 13% from waste.
  • 9% from fugitive emissions from coal.
  • 6% from rice cultivation.
  • 6% from biomass.

Most of attention in regard to methane emissions has been given to belching from ruminant animals. Yet cutting red meat (and rice) from our diet is not a matter for COP 26, IMO. Yet there are other matters to be considered at this conference. For example, what about fugitive emissions from natural gas?

Let us suppose that in the next 10 years we were able to cut methane emissions from everything except ruminant animals and rice cultivation by 50%. In this case the atmospheric methane would fall from 1870 ppb to 1730 ppb. This would be just the beginning, for it would continue to fall out to 2100. In other words, instead of contributing to the growth in global average temperature, it would mitigate the increases from other sources.

The move from coal to natural gas for electricity generation may have been a good idea at the time, but we should not now chose to use these gases for electricity production. If this is done and also we cut methane emissions from waste as well as changing from biomass to electrical cooking and heating, this would reduce atmospheric methane, without doing anything else. So a cut in methane emissions by 2030 should be on the COP 26 agenda.

Actual and projected increases in global average temperature since Industrialisation.
Effect of cutting methane emissions

F-Gases at COP 26

When the Montreal Protocol was established in 1990, it was realised that moving from ozone-depleting CHCs to other gases would increase atmospheric greenhouse gases. At the time it was agreed that certain gases mentioned in the Montreal Protocol gases would be fazed out from 2025. Yet there is no sense that this commitment is being taken seriously in the run-up to COP 26. It should be included in the final agreement.

Electricity Production: Low CO2

Presently, there are only two viable models for electricity production in a low CO2 environment: nuclear and intermittent sources. While nuclear is favoured in some places. It is not favoured in other places. In any event, it would appear that following this route is very expensive. On the other hand, intermittent sources, by their very nature, are unreliable.

It is true that cyclic fluctuations through the week can be managed through an appropriate level of storage, which could be via pumped-hydro, batteries and other more experimental means of storing electricity. Therefore, it is not cyclic and predictable fluctuation in demand that is preventing the take up of intermittent power supply. The problem is in the unpredictable nature of supply. The thing that is holding back more widespread use of intermittent supply of electricity is the lack of a plan to cover the shortfall in electricity supply when the wind or the sun fail to deliver the quantum of electricity that is required. This is the biggest problem in moving to a more complete dependence upon intermittent / renewable supply of electricity.

For nations that are already industrialised there is a simple solution at hand, even though it cuts across the ideological resistance to coal. Yes, the solution is to use coal-fired generators (and any existing redundant gas-fired generators) to provide back up generating capacity in the case of a failure in supply of electricity from renewable sources. In the short-term, the existing coal and gas-fired generators could be brought on line in the event of a failure of supply. Even with the current configuration, this should happen in less than 20% of the time once the intermittent supply system generally provides 100% of electricity power. This approach will ensure a 80% cut in the CO2 emissions from this source. On the other hand, it does mean that banning coal from the electricity-generation field will not be possible, or even practical (if one really wants to cut CO2 emissions).

In a system that does not use nuclear power, it would appear that a properly designed system will provide all power to consumers from renewables and from storage. Under this system, the storage would be replenished from time to time using coal-fired generators. This would only happen when the storage falls below a level in which the operators believe is too low for a measured guaranteed security of supply. Under this scenario, the coal-fired generators would run flat-out until the storage was replenished.

In a system that uses nuclear power, the power stations could run continuously, replenishing the storage in a balanced manner.

Oil-based fuel

We already know how to cut the usage of oil-based fuels for passenger vehicles and light trucks. The simple solution is for each country to mandate that new vehicles must be fully electric. However, this will bring many problems in its wake. These include a complete replacement of the refueling system and potential massive increases in the prices of raw materials. It would be more sensible to move more slowly.

The ideal solution, hopefully to be discussed at COP 26 is for each nation to move towards mandating hybrid, plug-in hybrids and fully electric vehicles for new vehicles well before 2030. The market can then manage the extra cost for each type of vehicle. Since a simple hybrid is not much more costly than a vehicle with a 100% internal combustion engine, this can be the starting default. Even this will cut the consumption of petrol by about 30-40%, which will lead to a significant reduction in CO2 emissions from this type of vehicle.

Solutions for heavier trucks and buses and ships can be considered at a later period. The end result should be that by 2030 we will have a solution prepared for all oil-based fuels.

Cement and Steel

Solutions are currently being considered for the CO2 generated in these two processes. Time is required to allow feasible and proven solutions to emerge.

Conclusion

Significantly cutting greenhouse gas emissions in this way by 2030, in the areas where we already know how to do it, will avert the climate change crisis, and put us on a path to prevent global warming since industrialisation of more than 1.5C. Early and radical action is required.

Such action should be legacy of COP 26. The question remains, will the representatives have the courage to take the actions that are required? Will the members present be willing to abandon those ambitions that will not lead to that outcome, but will hinder this desirable result.

Is electricity demand too high?

Electricity demand could be too high at present as China and India increase coal-fired generation and because of the push to cut CO2 emissions from passenger cars.

Expected Electricity demand in 2021 and 2022

The IEA expects that global electricity demand will grow faster than renewables can keep up in 2021. Even though generation from renewables like hydropower, wind and solar is due to grow 8% in 2021 and by more than 6% in 2022, it will only be able to meet about half the projected increase in global electricity demand. The rest will be met mostly by thermal plans that burn fossil fuels, especially coal.

Furthermore, IEA expects most of this extra demand will come from China and India.

China is pushing hard to increase electricity demand and supply

It is well known that China is increasing its coal-fired generation capacity. A generous explanation is that China could be using this as an opportunity to provide back-up generation power once its intermittent renewable capacity can provide most of its demand needs. Backup capacity is needed once any system goes to 100% renewables during ordinary operations. This is because all intermittent supplies can fail and these failures can spread over an extended period. Storage can meet many of these shortfalls in supply, but there is a point where storage will not be sufficient. It is at this point that it coal and gas-fired generation will be required. It is only prudent to provide for this capacity.

India is massively electricity poor.

No-one can seriously complain about India increasing its coal-fired generation. In 2016 it was running at about 2 tonnes per person CO2. China was running at about 7 tonnes per person and USA was running at 15.5 tonnes per person. However, once it has properly addressed this issue, it should eventually aim for 100% renewables during ordinary operations. Then it will need backup generation capacity which can be supplied by periodic running of its legacy installation of its fossil-fuel generators.

OECD nations need to cut fossil-fuel generated electricity

Without cutting greenhouse gas emissions the global average temperature will continue to increase. A cut in the level of emissions can be achieved, and this should result in global average temperature being held at 1.5C above pre-industrial levels. It will still bump above this, but will also fall below, as has happened in March 2021, which is 0.33C below March last year.

A path to a maximum 1.5C temperature increase.

It is a reasonable target for every nation that can do it (i.e. the OECD nations) to run electricity generation on 100% renewables during ordinary operations by 2030. It could keep its remaining coal and gas-fired generation to be only used to provide backup capacity. If this is done, it will assist in levelling this curve much earlier than 2030 and give the world more time to solve the intractable problems with steel, cement and building heating.

The way this could work is for coal and gas-fired generation to be removed from directly supplying the grid. This capacity then can be used to renew storage of electricity. It only needs to run when storage capacity is seriously depleted, but during that time it can be run at 100% of capacity 24 hours a day, seven days a week. This will minimise the CO2 emissions from this process and hold costs down as much as possible.

The push for fully electric vehicles could be counter-productive

It a nation does not have enough renewable electricity generation to fully supply the grid, it should consider very carefully whether fully-electric vehicles are as CO2 free as is often claimed. If additional fossil-fuel is used in generating electricity as a result of the widespread introduction of fully-electric vehicle, there may be no actual cut in the CO2 emissions for that country as a result of this policy.

It should be noted that non-plug in hybrids can cut fossil-fuel usage by almost 50%. Each country should to take this in account.

Remove Greenhouse Gas Emissions

It is feasible to remove greenhouse gas emissions in order to cap global warming at around 1.5C. There are simple and well researched ways to do this. Some are under way but they need more work. Ethanol has been overlooked as a serious strategy. It is argued that all of these ways to cut the emissions of greenhouse gases should be done.

Three approaches are considered here and the likely outcomes predicted based on mathematical modelling of the last 170 years and then predicting out to 2070. This requires estimating the likely greenhouse gas levels at the end of each year.

The ideal case, at least as presented here, is a scenario in which it is predicted that it is possible to hold the increase in global average temperature to 1.5C, stabilising at that level. This requires all nations to participate while holding to the timeline indicated below.

While all nations should not find the actions presented here to be an insurmountable challenge, some non-OEDC nations could consider that the timeline for action will be too difficult for them. To cover this situation, a second scenario is canvassed. In this scenario the timeline for implementation for non-OEDC nations starts in 2050 and goes out to 2070. Under this scenario, the predicted outcome is an increase in global average temperature of 1.7C, stabilising at that level.

Finally, we consider a third scenario, which is the continuation of greenhouse gas emissions at the current level out to 2070. The predicted outcome is an increase in global average temperature of 2C and a steady and unrelenting increase in global temperature after that date.

It is noted that these predictions depend upon not encountering a “black-swan” event (being something not already seen in the last 170 years) over the period of the predictions.

Strategies in the “Ideal Model”

Remove coal by 2050

The removal of coal from electricity generation is already happening in OEDC nations. For modelling purposes, it is assumed that this will be completed for all nations by 2050.

Electricity

Removing coal from electricity generation is the most developed strategy for reducing greenhouse gas emissions, at least in OECD countries.

  • Wind and solar are currently the favoured options in most nations. However since they do not always provide dispatchable electricity, methods of storing electricity and then dispatching it to users are required. Presently, the options available to “store” electricity are pumped-hydro, liquid air and batteries. Liquid-air and batteries can provide a useful mechanism to handle the daily fluctuations in supply and demand; pumped-hydro can handle longer-term fluctuations in supply and demand.
  • Hydro facilities can provide electricity each day as required. Very large facilities can help to manage longer-term fluctuations in supply.
  • Nuclear energy and geothermal energy can provide electricity each day as required.

All storage methods share a single limitation: each can only provide dispatchable electricity if it has previously been stored. In the case of unexpected demand beyond the capacity of renewable resources plus storage to meet, either in the short term or more significantly in the medium term, they do not provide a fall-back facility. Nuclear and geothermal energy are the only currently available fossil-fuel free options that can fill the gap (if they too have capacity). Concerns relating to the safety of nuclear energy may possibly be eliminated by using relatively small molten-salt reactors. If fossil-fuel is to be rejected as a source for electricity generation, this matter should be seriously considered.

Steel

Using hydrogen gas as a substitute for metallurgical coal is being actively explored in several countries. In implementing this, the cost of producing hydrogen gas could be an issue.

Other approaches are already being tried, as discussed here.

Remove 90% of oil-based fuels used for all vehicles and ships by 2050

Action on parts of this plan can be commenced immediately. For modelling purposes, it has been assumed that implementation will begin in 2025 and finish in 2050.

Cars

It is physically and economically feasible to replace all petrol and diesel driven vehicles with ethanol driven vehicles by 2050. It is recognised that, with the falling price of oil, there will be a comparative-cost penalty that cannot be allowed to derail the implementation.

  • Producing ethanol from crops such as sugar cane and corn, while relatively competitive, demands too much land to be a complete solution. Less land-intensive approaches are required. Ethanol from algae has been explored, but it is not yet viable. A viable method of obtaining ethanol from bamboo has been explored. It is accepted that more research is required to develop a solution that will enable the transition to 100% ethanol. (It could be easier to do this than to produce and store hydrogen.)
  • An ethanol-based vehicle fleet has already been established in Brazil. This nation has implemented technology that will allow petrol vehicles to accept any ethanol mixture, from 100% down to 0%.
  • To implement an ethanol-based strategy, all new vehicles must be equipped with this technology. Governments could consider a small government subsidy to make this cost-free to users.
  • Install refuelling bowsers committed to provide a variable ethanol mixture until 100% ethanol supply is sufficiently secure. Variable mixtures to be provided until around 2050.
  • Ethanol to be produced in countries with surplus agricultural capacity. Growing crops in regions that do not require irrigation must be a priority, for example, growing sugar-cane in tropical and sub-tropic regions, preferably delivered via locally-owned and managed ethanol facilities in the countries in these regions. This approach will provide those countries with a way of relatively pain-free economic development.
  • Limit the amount of ethanol required for this change by preferencing plug-in-free ethanol/electric hybrids instead of pure ethanol vehicles.

Trucks

Research in the USA has shown that large trucks can be designed and built to run on ethanol. Change over to this type of engine can be done by 2050. This will require the following steps:

  • Build the engines.
  • Ensure sufficient ethanol supply available to reliably provide all ethanol-driven trucks with fuel.
  • Provide refuelling bowsers that can provide 100% ethanol.

Ships

Research has yet to be done on the best way to convert ships to run on ethanol, but it is assumed that this can done.

Fully-electric vehicles

Fully-electric vehicles are increasingly popular in Western countries. Yet it is difficult to see them as a global replacement for petrol and diesel fuelled vehicles:

  • The demand for electricity from this approach will require a much larger electricity-generating sector. This will be difficult for countries that are already electricity poor, especially in the absence of relatively cheap coal-fired generators.
  • The demand for finite resources in order to build fully-electric cars will create supply difficulties, with the world possibly coming close to exhausting such resources. The supply of cobalt is already under stress and alternatives are being developed. The future supply of copper and lithium could also be a limiting factor.
  • Fully-electric cars at present are much more expensive that plug-in-free hybrids. While this cost differential should reduce over time as a result of manufacturing efficiencies, it also likely that supply problems could cause the opposite outcome.

Remove oil-based fuels for aeroplanes by 2070.

At present, hydrogen for aeroplanes is just an idea, although widely canvassed. For modelling purposes, it is assumed that it will begin in 2050 and be completed by 2070.

It is now recognised that it is unlikely that batteries will be a viable fuel source for long-distance aeroplanes. Currently attention is being given to using a hydrogen-based fuel. This will require three things:

  • A more cost effective way of producing hydrogen gas is required (possibly from water through electricity).
  • A cost effective way of compressing hydrogen gas is required.
  • The proposed aviation fuel is to be proven to be reliable.

It is assumed that this can be done by 2070.

Remove 90% of natural gas from electricity generation by 2050

Natural gas is currently considered the cheapest and most effective way to provide peaking electrical energy. Removing natural gas from the equation will require the implementation of similar strategies to those required for the removal of coal from the electricity-generation process.

Reducing the use of natural gas will have an another benefit: reduced fugitive gas emissions will progressively cut the level of methane in the atmosphere.

This change is unlikely to happen until 2040 and could be completed by 2050.

10% of natural gas has been retained in the model to allow for additional peaking capacity to be retained in the system to cover the times the electricity grid is under unexpected demand stress.

Remove 90% of natural gas from building heating and industry by 2070.

Natural gas provides a versatile fuel for heating. It works in all climates and is relatively non-polluting. The remaining problems are the CO2 generated from burning it and the methane lost during the processes of extraction, transportation and use. The following strategies could be implemented to remove this fuel use:

  • Increase the volume of methane trapped from organic waste.
  • If a cost efficient way of producing hydrogen gas from water through electricity is developed, it can be used for heating.
  • Electrically driven heat pumps can be used for heating provided an appropriate system is chosen and it is shown to be cost effective.

It is assumed that these strategies can begin to be put in place by 2050 and be fully implemented by 2070.

Cut CO2 emissions from the manufacture of cement by 2070.

  • Methods to be developed so that CO2 from cement manufacture can be eliminated.

Other Actions

These are things that are being done in some places and should be done everywhere straightaway.

Ideal Outcome

If the above strategies to remove greenhouse gas emissions were adopted by all countries, the predicted result is that global average temperatures increases since Industrialisation will be held to 1.5C by 2050 and beyond, with a standard error of ± 0.11 (mostly due to El Niño and La Niña changes in some years and volcanic eruptions).

The modelled values are based on a calculated formula that takes into account the forcing from the additional greenhouse gases in each year and deducts the estimated cooling effect of atmospheric sulphur. More details on the formula can be obtained here.

In this model, no allowance has been made for capture of CO2 and its storage underground. This could be considered, as a last resort, by nations unable to follow this “Ideal Model.”

Split Model

The Split Model covers the situation of the OECD nations following the “Ideal Model,” but the other nations deferring taking these drastic action to remove greenhouse gas emissions until between 2050 and 2070. In this case, the predicted result is that global average temperatures increases since Industrialisation will be be 1.7C, with a standard error of ± 0.11 (mostly from other cyclic climate factors).

Stable Case

The starting point for the Stable Case is the assumption that emissions will continue out to 2070 at the 2018 levels of emissions. It therefore is called the “Stable Case.” (It is assumed that, in the period to 2030, reductions in CO2 emissions after 2018 in OECD nations will be offset by “catch-up” emissions in the other nations.) The stabilising of globalised CO2 emissions was the substantive result of COP21 Paris.

We can expect a temperature increase of around 2C by 2070 if the world follows the Stable Case, with further increases after that date.

Modified IEA-based model

An IEA report, Energy Technology Perspectives, designed to model the actions required to cut greenhouse gas emissions, assumed that significant real CO2 emissions will continue well past 2070. Therefore, carbon capture, utilisation and storage was an important part of its predicted “net zero” outcome. Since most of its predicted actions can be envisaged as taking place towards 2070, it is likely that a stabilised temperature increase of around 2C will be the result of its strategies, around the outcome of the Stable Case for 2070, but with no further temperature increases.

However, using the IEA report framework, it remains possible to consider cutting CO2 emissions substantially by 2050 even without carbon capture and storage.

A “Modified IEA-based model” of this kind would deliver a global temperature increase of 1.6C, being a result somewhere between the other two main models. The downsides of this approach is that it demands virtually immediate action and some very costly infrastructure. It is unlikely that either of these elements will be delivered. On this basis, the “Ideal model” is to be preferred: it offers a better outcome as well as implementation being less costly and less disruptive.

Comparing temperature outcomes

Different outcomes using different removal strategies.
Projections of Global Average Temperatures

Conclusion

While all the actions to remove greenhouse gas emissions described here are important, there are two actions that will make the biggest difference to the final temperature outcomes.

  1. Removing fossil fuels from electricity generation, especially coal, but also natural gas. Both have a very significant impact on the final result and both create CO2 and methane emissions.
  2. The immediate adoption of a strategy to convert all vehicles from fossil fuels to ethanol. This will be simpler, quicker, cheaper and less resource depleting than the currently favoured electric car strategy.

In addition, many small actions to remove greenhouse gas emissions will accumulate to have an appreciable impact on the final result.